
TinyAID: Automated Instrumentation and
Evaluation Support for TinyOS

Christoph Weyer, Christian Renner, and Volker Turau
Hamburg University of Technology

Institute of Telematics
Schwarzenbergstraße 95

D-21073 Hamburg, Germany
{c.weyer,christian.renner,turau}@tu-harburg.de

Hannes Frey
University of Paderborn

Computer Networks Group
Pohlweg 47-49

D-33098 Paderborn, Germany
hannes.frey@uni-paderborn.de

Abstract—TinyAID is a tool that supports automated instru-
mentation and evaluation of TinyOS-based distributed applica-
tions. Two types of instrumentations are provided: logging of call
chains and message flows within the network. TinyAID assists the
debugging process by post evaluation of the logged data. A main
benefit is the visualization component for representing traces in
their spatial and temporal order.

The instrumentation and evaluation concepts are evaluated in
two case studies: the SelfWISE framework and a selection of
routing algorithms. Due to the automated process of TinyAID
the evaluation could be performed without a deeper knowledge
of the implementations under test. In the first case TinyAID
revealed a weakness in the TOSSIM random number generator.
The second case demonstrates the power of TinyAID to visualize
the quality of protocols in a unified manner, without any manual
changes to the specific source code.

Christoph Weyer, Christian Renner, Volker Turau, and Hannes Frey. TinyAID: Automated Instrumentation and Evaluation
Support for TinyOS. In Proceedings of the Second International Workshop on Sensor Network Engineering, IWSNE ’09,
Marina del Rey, CA, USA, June 2009.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and
technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding
that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints
invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder.

I. INTRODUCTION

Sensor networks consist of small, micro controller driven
wireless network nodes with additional sensing capabilities.
Once deployed in a certain environment, such nodes are
supposed to set up a wireless network in an ad-hoc fashion and
to run unattendedly for a long period of time. Individual sensor
nodes collect data about a certain physical phenomenon. The
gathered data can, by means of the wireless network, be easily
moved towards one or more data collection nodes.

Sensor networks are a promising approach. In the future
they may support measurements in application domains that
will be far beyond what can be measured today. The general
idea is appealing and attracted many researchers. A lot of
research has been conducted on protocol design for various
problems, such as data communication, topology control, time
synchronization, data collection, tracking, or activity schedul-
ing, just to mention a few. Once a new protocol has been
developed and some positive properties have been investigated,
theoretically or by means of simulation, producing an exe-
cutable for real sensor networks still requires a lot of additional
effort.

We see that there is a high demand for supplemental de-
velopment support. One important goal is to support protocol
debugging, i.e., a common mechanism to test correctness of
and to identify errors in existing protocol implementations.
Another important goal is to devise a protocol evaluation

system. Such a system would provide a common base to
compare different protocol implementations with each other.
This may, e.g., be used to show the benefits and drawbacks
of a new implementation as compared to existing protocols. It
would also allow for investigating the improvements of a new
version over an existing one.

In this work we consider the problem of protocol debugging
and protocol evaluation. While at first glance those two
problem areas appear to have nothing specific in common, we
argue in Sect. II that automated instrumentation and automated
evaluation support is a striking methodology to address both
problems. The term automated instrumentation describes the
process of automatically adding instrumentation code to an
existing implementation, so that the extended code produces
output usable for further analysis. The most important kind of
output in this context is logged data, i.e., producing data sets
that systematically encode the protocol behavior and protocol
states in a chronological order. These data sets can further be
investigated offline. This process is called the post evaluation
pass. Investigation of the data sets may be performed manually
or in an automated way.

From our perspective performing instrumentation automat-
ically requires a framework and coding conventions for the
development of the protocols under investigation. Only if the
code complies with this, an automatism can find the right
hooks to include the appropriate instrumentation code. We
believe that TinyOS – having a large community and already
consisting of a multitude of relevant protocol implementations
– will benefit from automated instrumentation support. In
Sect. III we suggest a simple yet effective way for automatic
instrumentation of TinyOS-based protocol implementations.

The most relevant elements of evaluation support we see
here are tracing and statistical analysis. Tracing refers to a
representation of the behavior of the system under test with
respect to temporal or spatial properties. With statistical anal-
ysis we refer to all mechanisms that analyze aggregations of
logged data. Processing and evaluating large amounts of data is
achieved by information visualization that leverages the human
visual capabilities, thus allowing to detect complex or even
unexpected interrelations. In Sect. IV automatic evaluation
examples from both classes are presented.



This work is not considering a specific protocol, but in-
troduces a general concept for protocol instrumentation and
evaluation. Assessing such a concept is a less common case
and some characteristics are hard to quantify. However, we
provide partial answers on this difficult question in Sect. V.
To test and illustrate usability of the suggested concept, it
is applied to existing applications and routing protocols. We
also investigate the ease of use of automated instrumentation,
the obtainable results from automated evaluation, and the
overhead incurred when applying these concepts. In Sect. VI
an overview of other existing tools is presented. Finally,
Sect. VII will provide a preview on the necessary steps ahead
to finally implement our envisioned tool for real deployments.

II. PROBLEM STATEMENT

A. The Need for Debugging Support

Programming usually requires gradually improving a first
version towards a final release that offers reliable correctness
to a considerable extent. For single-threaded programming
the use of breakpoints is the primary choice. However, this
becomes ineffective, if applied to multi-threaded or even
distributed programming.

In principle it is possible to extend the code for a sensor
node with breakpoints, for instance by using the JTAG port
of the micro controller. In a deployed system, however, this
approach is like removing that node from the sensor network.
Reaching a breakpoint disables all interrupts. Hence, the node
will not react on any incoming messages or on timeouts.
Thus, the inspected system may behave highly different from
an uninspected one. Moreover, due to the non-deterministic
behavior of system parameters, such as clock drift, message
delivery success, or message transmission times, a system may
behave differently in each evaluation pass.

We believe that logging support is the most appropri-
ate solution here. It is capable of providing a fine-grained
chronological list of state information of every node. Once
established, the log can be used in a post evaluation pass for
further analysis.

However, adding instrumentation code to existing software
has a few drawbacks. The additional code changes the runtime
behavior. Especially in time critical parts of the source code,
e.g., interrupt handlers, the insertion of code can lead to a
change in the system behavior. Therefore, the places and the
quantity of the instrumentation code must be carefully chosen
to keep the influence on runtime behavior as small as possible.

B. The Need for Generic Evaluation Support

When comparing existing protocols with a new protocol
implementation, common metrics are needed. Using manual
instrumentation for obtaining measurements and computing
these metrics causes problems. While adding code lines for
logging to an own implementation may be easy, supplementing
foreign code with them requires some effort: that implemen-
tation has to be studied and understood in the first place.
However, necessary places for adding logging code might be
overlooked both in the own and particularly in the code of

others. As a result, a share of message transmissions will
not be available in the message logs, most likely leading to
misinterpretation of the protocol characteristics. Having an
automated way of instrumenting code will solve this problem.
Such a mechanism would add logging code, e.g., at places
where messages are transmitted.

C. Limitations

While we propagate automated instrumentation as the pri-
mary choice for protocol debugging and comparison, we also
see limitations on what can be achieved with that concept.
Consider for example an automated message logging feature
producing a file containing information about time and visited
nodes of certain message instances. Say we want to investigate
the success rate of a given single path routing protocol. We can
investigate the message type that is used to transmit data with
that protocol. Every message instance of this type appears on
a certain node, visits a sequence of nodes along the routing
path, and finally disappears. However, using such a log file,
how can we know that the last visited node was the message
destination and that the message was not just dropped due to
a routing failure?

We can’t. One has to introduce additional coding conven-
tions, e.g., the use of a certain routing framework with generic
routing functions for sending a message to the next hop,
dropping a message on failure, and consuming the message
on success. In this case information about those function
calls could be exploited to infer delivery failure and success
automatically. However, if we want to deal with legacy code,
inventing such additional coding conventions is not an option.

Another important example is a state machine implemented
by a large switch statement within the code block of a single
module. Depending on the state, a certain part in the switch
statement is executed. Since the effects of two states may be
exactly the same, despite a local variable encoding the state, it
appears to be impossible to infer information of state changes
without having some additional knowledge about the code
semantics.

It follows that while we can find many application cases
where automated instrumentation is a productive tool, there
are those cases where only partial information can be produced
automatically. Not to exclude those cases, in which additional
means for manually adding application context information
into the instrumentation and evaluation process are required.
For instance, in the routing example discussed above, appli-
cation context could determine the transport layer end points
which were served by the investigated routing protocol.

III. TINYAID INSTRUMENTATION

TinyAID currently supports two kinds of automated code
instrumentation: call-chain logging and message logging. Fig-
ure 1 depicts the tool chain of automated code instrumentation.
Given any nesC source code, the TinyOS tool chain first
creates a single, plain C file by combining this code with the
TinyOS components used. The automated code instrumenta-
tion intercepts the TinyOS tool chain after this point, adding



an additional preprocessing step, called instrumentation pass.
Given a certain configuration file, “config.cfg” in this exam-
ple, the instrumenter inserts additional instrumentation code,
provided by a code template, into the plain C file. The code
template reflects the way how the log information is dumped
on a given target platform. This step results in an instrumented
C file that will then be handed back to the remaining TinyOS
tool chain. Depending on the target platform, an instrumented
program image or a TOSSIM library, in case of simulations,
is finally created.

nesC file

plain
C file

config.cfg

nescc

instrument.
C file

instrumenter

TOSSIM
library

remaining
tool chain

main.ihex
code

template +

TinyOS

Fig. 1. Automated instrumentation by intercepting the TinyOS tool chain.

A. Call-Chain Logging

In call-chain logging the enter and exit times of certain
event handlers and functions of the nodes are logged. This is
achieved via additional code that is added to these handlers and
functions during the instrumentation pass. For every handler
and function, logging code is added immediately after the
function entry point, at the end of the function, and immedi-
ately before each return. The wiring of TinyOS components is
converted into C functions containing only a return statement
with the next function call as parameter. These referring
functions are skipped by compiler optimizations. Therefore,
no instrumentation code is inserted in those functions. Every
logged enter and exit event constitutes a single line. Data
written in a line is the node ID, a time stamp, either > for enter
or < for exit, and an identifier for the called event handler or
function.

Since call-chain logging may result in very large data sets,
the logged data only consists of unique integers. During the
instrumentation pass, a separate file is created, which maps
every unique event handler to a unique integer value and vice
versa.

An extract of an example call-chain log is depicted in Fig. 2.
In this example, event handler 42 of node 5 is entered at time
1320ms. Within this, a nested call to functions 36 and 12
is performed. Later at time 1684, event handler 20 of node
3 is called, returning immediately without any other nested
calls. Finally, at time 1930, event handler 42 is called again,
however, now on node 7. This time the handler is passed
without any other nested calls.

Node ID Time [ms] Direction Handler ID
5 1320 > 42
5 1322 > 36
5 1323 > 12
5 1324 < 12
5 1328 < 36
5 1333 < 42
3 1648 > 20
3 1649 < 20
7 1930 > 42
7 1931 < 42
... ... ... ...

Fig. 2. An extract of an example call-chain log file.

The event or function to be logged is defined by the
configuration file used during the instrumentation pass. This
information is defined by using regular expressions, which are
matched against the unique C preprocessor event handler and
function identifications in the plain C file created by the nesC
compiler.

Every line in the call-chain configuration file starts with
either ’+’ or ’-’ to include or respectively exclude event
handlers or functions that match the following expression. The
inclusion or exclusion symbol is followed by d, f, or h to
decide whether the following regular expression is applied on
directory names, file names, or handler and function names,
respectively. This is followed by the regular expression.

The instrumenter steps through the plain C file and checks
for every encountered function or event handler entry point,
if they match any of the expressions of the configuration file.
For this, the list of expressions is scanned from top to bottom,
until the first match is found. Depending on the inclusion and
exclusion flag, this line decides, if code instrumentation is
applied or not. If no entry is found, the code instrumentation
is not applied.

-d /opt/tinyos-2.x/.* # exclude everything in /opt/tinyos-2.x
+f Test.nc # include everything in file Test.nc
+h fired # include all fired event handler
+h booted # include all booted event handler

Fig. 3. An example configuration file for call chain logging.

Refer to Fig. 3 for an example. The first line excludes any
code residing inside the directory /opt/tinyos-2.x from
being instrumented for logging. The next line demands that all
event handlers and functions implemented in file Test.nc
are instrumented. The remaining two lines include the event
handlers fired and booted for instrumentation.

B. Message Logging

TinyAID also supports logging of information about mes-
sages that have been created, sent, or received by the Active
Messaging framework [1]. This is obtained by the automatic
instrumentation of the Active Messaging functions. Basically,
additional logging code is added immediately after the entry
points of the Active Messaging functions AMSend.send,
Receive.receive, and Packet.clear. For each sup-
ported platform, the configuration file has to provide the



names of the modules implementing these functions. Thus,
the instrumenter can automatically insert the code templates
for message logging. It also extends the message header by a
unique message ID. The latter consists of the address of the
node having created the message (the message’s origin) and a
sequence number. Each message is tagged with this informa-
tion at creation time. Here we utilize the Active Messaging
coding convention that for any newly created message the
Packet.clear function has to be called. Hence, message
tagging is completely transparent to the user.

The actual code for creating the log files has to be provided
by the code template file. This file has to contain code snippets
which are invoked on message creation, transmission, and
reception. In our current example template file, the code
snippet logs the following information: address of the message
creating node, creation time, character c for encoding the
message creation event, and message ID (origin plus seqno).
For an example, refer to the first data entry in the example log
file in Fig. 4.

node time [ms] action type src dest origin seqno
3 3520 c 3 42
3 3521 s 17 3 12 3 42
5 3524 c 5 14
5 3525 s 34 5 65535 5 14

12 3535 r 17 3 12 3 42
3 3520 c 3 43

... ... ... ... ... ... ... ...

Fig. 4. An extract of an example message log file

For message transmission and reception the corresponding
code snippets provided in the code template are also passed.
In our current example template, both create a data entry with
the same information as provided upon message creation. In
contrast, however, send and receive events are distinguished
by the characters s and r in the action column. In addition,
the message type, the sender (src) and destination (dest) are
also logged. Note that the message ID, consisting of origin
and sequence number, can be used to relate packet creation
and the origin’s final packet transmission, which could be far
apart in the log file due to, e.g., message buffering in the
routing layer. Furthermore, unicast and broadcast can easily
be distinguished, because the latter uses a destination address
of 65535. If node and destination address are not equal (and
the latter is not the broadcast address), message overhearing
can also be tracked.

Refer to Fig. 4 for an example. A message with ID 3-42 is
created at time 3520 on node 3. At time 3521 it is then sent
to node 12. This node is receiving the message at time 3535.
In the mean time another message with ID 5-14 is created at
node 5 and broadcasted. Finally, at time 3520, node 3 creates
another message 3-43. From the sequence numbering it is
clear that this is the next message after the above considered
message sent from 3 to 12.

C. Manual Instrumentation
There are two main situations, in which manual code instru-

mentation may become unavoidable. These include identifying

the visited states of certain state machine implementations,
and secondly identifying the end points of communication
protocols.

For the first aspect, a function state(name) is intro-
duced. It can be added manually at any code line. The
instrumenter will create a mapping from state names to
automatically generated state IDs. Again, as with call-chain
logging, the additional mapping is used to keep the logged data
compact. Code execution passing such function will produce
an entry in the call-chain log file. The direction will be denoted
as !, and the column handler ID will be used to store the state
ID.

For identifying correct delivery of message communication
the function consume(msg) is introduced, which has to be
added at those code places where semantically the message
successfully reaches its destination. Whenever code execution
passes that function, the message ID and its type are obtained
from the given message. In the log data, message consumption
is denoted by an x in the action column.

IV. TINYAID EVALUATION EXAMPLES

The automated evaluation process is implemented by the
TinyAID evaluator. As depicted in Fig. 5, it requires a
set of call chain log and message log files in order to
produce the appropriate evaluation files. An additional input
file context.dat provides information about how the files
are to be combined, which data has to be extracted, and
which additional application context is required to evaluate
the data. The output produced can be classified in statistics
and visualization data. Statistics data are either data sets or
PDF files. Visualization data are either PDF files or videos
representing behavior over time.

evaluator

context.datcall chain
log files

message
log files

statistics visualization

Fig. 5. Automated evaluation based on call chain and message log files.

A. Event Tracing

This concept is a pictorial representation at which time
which node was entering a certain event handler. In order to
produce such representation, the evaluator requires a single
call-chain log file, the information about which event should
be inspected for which nodes during which time period, and
which resolution should be used for x- and y-axis. The result
will be a PDF file with one or several lines of time line



representations. The time is depicted on the x-axis and nodes
are depicted on the y-axis. Every time a node enters the
inspected event handler, a marker is placed on the time line
of that node. Refer to Fig. 6 for an example of a single line
event tracing result. Which information can be inferred from
this figure?

node

time

1000

2

3

4

1

1100 1200 1300

Fig. 6. An event tracing example.

We see several visual indicators which can be useful for
protocol debugging. The first one is detection of event star-
vation. This term refers to an event that is expected to occur
regularly – e.g., a regular beacon –, but suddenly happens to be
missing. Such error might occur in a complex protocol where
the scheduled timeouts might be deactivated in certain critical
protocol states. If timeout activation on leaving of this critical
state was forgotten in the implementation, the timeout may
never occur again. For instance, in Fig. 6, starting at about
time 1100, node 4 shows an indication of event starvation.

Another indicator that can visually be detected is that of
event explosion. This term refers to an event that – compared
to the event history – starts to occur with an abnormal high
frequency at a certain time. Figure 6 depicts an event explosion
example. Compared to its event history, at about time 1200, the
observed event happens to occur unusually often on node 3.
Such an error might occur, when a repeating timeout event
handler is supposed to schedule the next timeout whenever
it is called. The first time, however, this event has to be
scheduled from somewhere outside the event handler code.
If by implementation failure, code for scheduling the timeout
event from outside the event is accidently executed a second
time, two parallel lines of this repeating timeout event will be
running on the node. Things are getting worse, if this failure
happens to occur from time to time. Eventually the node will
exclusively be busy with handling all of these timeout events.

Two other types of visual error indicators refer to the timing
of events. One indicator which we call event jittering shows a
burst behavior of event occurrences. An example can be found
for node 2 in Fig. 6. At about time 1000, time 1100, and
immediately before time 1200, an event accumulation can be
observed while barely any other event occurs in between. This
can be an indication of a protocol failure, if regular event inter-
arrival times are actually expected. Consider for example the
event of sending control information as background traffic. If
such burst behavior occurs, control information might severely
interfere with actual data transmission or even make data
transmission during this burst impossible.

The other visual timing error indicator is event synchro-

nization. This refers to a regular event that starts to occur on
different nodes at about the same time. Refer to node 1 and
2 in Fig. 6. At about time 1200 both nodes start to enter the
event handler almost simultaneously. Such behavior might be
an error, if event scheduling on different nodes is expected to
be a random process. For example regular beaconing intervals
should not be in sync with other nodes in order to avoid
too many beacon message collisions. Synchronization might
occur, if inclusion of some random component was forgotten
in the code or if using an error-prone random number generator
for the beacon interval computation.

B. State Tracing

While event tracing aims on a fine grained inspection of a
single event, state tracing provides a coarser view on protocol
behavior and interaction. The state tracing concept aggregates
event handler calls into specific classes. Again for every node a
timeline is visualized. The timeline contains bars which extend
over the time event handlers from a certain class are called. As
soon an event handler from a different class is called, the bar
will change. For producing such trace, the evaluator requires
the same input as for event tracing. In addition a classification
of event handler calls needs to be provided. Such classification
declares the classes itself and assigns certain event handler
calls to those classes. Any event handler call that is not in this
class will be ignored in the evaluation. As with event tracing
the result is an PDF file, which contains one or more lines of
time line representations. Refer to Fig. 7 for an example of a
single line state tracing result.

node

time

1000

2

3

4

1

1100 1200 1300

Fig. 7. A state tracing example.

Finding the erroneous code when an error has been found
for a certain node at a certain time is one helpful application
of this diagram. Consider for example, that a state machine
implementation is to be inspected. Say every possible state
implements its own handlers for the considered events. Then
a reasonable classification will be aggregating the handlers
of every state into a different class. Consider now that for the
example depicted in Fig. 7 we figured out by some other means
that an error occurred on node 3 at time 1200. By inspecting
the state trace we know that at that time node was calling
event handlers belonging to the dark grey state. Thus, we can
narrow our failure search to the event handlers aggregated into
the dark grey state.

The diagram can also be useful for detecting the occurrence
of state oscillation. We denote with this term an unusual
frequent change of protocol states on a node. Consider the



example depicted in Fig. 7. Suppose the colors refer to the
states of a clustering protocol. Light grey means undecided,
grey means cluster member, and dark grey means cluster
head. At 1000 all nodes are in state undecided. Then cluster
head and member roles are assigned to the nodes. Around
time 1100 roles of 3 and 4 interchange which may be ok if
reculstering is an allowed feature. However, at around 1200
nodes 1 and 2 start to exhibit an suspicious behavior with their
states starting to change between cluster head and member
very frequently. This may be an indication of a failure in the
clustering protocols reclustering strategy.

C. Accumulation Diagrams

This visualization feature comprises two classes, which aim
at a pictorial representation of network-wide effects at large
scale. The first one, referred as path accumulation diagram [2],
depicts the frequency of links taken by the messages originat-
ing from a certain node and belonging to a certain message
class (see Fig. 8a and 8b). In our current implementation,
the evaluator requires the source node, a single message log
file, the type of the messages to be presented, a time frame
the figure should be created for, and a mapping of nodes to
physical locations in the network.

For each link the number of messages passing that link
within a certain time interval is counted. The frequency is
then depicted with different line thicknesses, i.e., the most
frequently used links are presented with the thickest line. This
simple representation is an effective way to get a first impres-
sion about the global behavior of a system under test. For
instance, routing messages might disperse over the network
like depicted in Fig. 8a, disseminating the forwarding burden
over the network, but resulting in longer path deviations on
the other hand. The opposite behavior, i.e., a protocol that
concentrates the path on a few selected next hop nodes,
might show a figure like sketched in Fig. 8b. By just visually
comparing the diagrams resulting from different protocols,
one also gets a first impression about how these protocols
may compare in terms of hop count. In the example, Fig. 8a
suggests a higher hop count when compared to Fig. 8b. This
may also give a first indication on delay characteristics which,
however, needs to be investigated separately, if significant
evidence is required.

The same visualization principle can also be applied to
nodes instead of links in order to show load distribution among
network nodes in an intuitive manner. We term this a load
accumulation diagram. Different node thicknesses are used
to visualize load placed on the nodes according to a certain
metric. Fig. 8c and 8d show an example load accumulation
diagram. Intuitively, Fig. 8c suggests a more balanced load
than Fig. 8d, in which a concentration of the load appears in
the network center. Assume, e.g., the figures depict the total
energy consumption per node during the whole measurement.
When aiming at a protocol design that tries to maximize
network lifetime by balancing energy load among all nodes,
then both diagrams suggest favoring the protocol that produced
the left-hand outcome.

(a) Dispersed path using
short links.

(b) Focussed path using
long links.

(c) Balanced light load. (d) Unbalanced high load.

Fig. 8. Visualizing large scale network wide effects with accumulation
diagrams.

In our implementation the evaluator requires the physical
node locations, the evaluation duration, and the evaluation
metric. They have to be provided via the context file. Example
metrics we considered in this work include the number of
message transmissions and receptions, the number of calls of
a certain function, and the sum over the nodes sojourn time
within a certain state. Depending on the investigated metric,
either a single message log file or a call-chain log file has to
be provided to the evaluator.

D. Statistics

The concepts presented so far focus on extracting visual data
from automatically generated log files. We believe that this is a
valuable feature to capture intentioned or failure behavior of a
protocol in an intuitive manner. In fact, however, the generated
log files offer more than that. Once a significant amount of data
has been produced, a rigorous statistical analysis can be run
over the data set. We list some common example statistical
values that can automatically be extracted from the log files
created by instrumented code.

The most common statistical values can be inferred by
counting rows or by considering the values of rows in the call
chain and message log files matching a certain criterion. One
examples would be the fraction of transmissions/receptions of
messages of a certain type over the total number of message
transmissions. Another one would be using entry time, exit
time, and handler ID to infer the number of times a node did
enter/exit, and the time fraction a node spent in a certain event
handler or in a group of event handlers.

Moreover, we can infer simple statistical data on the spatial
distribution of certain message types. Using the message log
files’ node, origin, and seqno columns, for each individual
message we can infer the hop count distance the message
travels from its creation until it disappears. Therefore, we are
able to compute the expected hop count for each message
type. Message types used locally, e.g., for neighbor discovery,



can thus be distinguished automatically from messages used
globally, e.g., flooding messages used for route discovery.

We also implemented statistical data extraction about rout-
ing paths, which in contrast to the above mentioned requires
a bit more than automatically generated log files. Extract-
ing statistics about routing paths require additional context
information about the message destination. This is available
due to manually inserted consume code extensions during
the instrumentation process. Such instrumentation will in turn
result in message log files that contain information about
message reception at the routing destination. An alternative
way is to leave the code untouched and provide context
information about source and destination nodes during the
evaluation pass. Using the message log file’s time, origin,
and seqno columns, in both cases we are able to infer the
traditional routing metrics like average hop count, average
delay, and success rate.

V. CONCEPT EVALUATION

The concepts introduced so far are evaluated by instrument-
ing an example application and three routing protocols. In
all cases TOSSIM is used for simulating the instrumented
code. Here, the process of logging data is simplified by
the fact that the information can be logged directly into
files. The configuration of the instrumenter for TOSSIM is
as follows. We have provided the modules responsible for
creating, sending, and receiving packets and code templates
producing tracing information as described in Sect. III-B. An
example code snippet for tracing packet reception is shown in
Listing 1.

In the following a detailed analysis of TinyAID is given.
The evaluation of the SelfWISE framework is described in
Sect. V-A. The instrumentation for tracing the packet flow
in routing protocols is discussed in Sect. V-B and V-C. The
overhead introduced by TinyAID when using TOSSIM is
benchmarked in Sect. V-D.

tossim_header_t * header = getHeader(msg);
dbg_clear("TINYAID_PACKET_TRACING",

"%d %lld R %d %d %d %d %d\n",
sim_node(), (sim_time_t)(sim_time() * 1e-7 + 0.5),
header->type, header->src, header->dest,
header->origin, header->seqno);

Listing 1. Code template for packet reception

Using TinyAID on real hardware in a deployed network
requires more advanced mechanisms to collect the logged data.
Storing the information on the nodes limits the runtime of
the experiment due to the limited memory. The best choice
is to have a wired backbone network that can be used for
logging purposes. The overhead introduced by logging the
data via the serial line is to large (around 2 ms) for most
situations. Therefore, a special hardware solution is needed in
order to extract the data and collect it at a central point. This
additional hardware is part of our future work. In this paper
we are concentrating on the principal concept of automated

instrumentation and its usability in the area of wireless sensor
networks.

A. Use Case: SelfWISE

SelfWISE is a framework for evaluating self-stabilizing
algorithms developed at the Institute of Telematics at Hamburg
University of Technology [3]. This software contains around
9.000 lines of nesC code. TinyAID is used to inspect the
behavior of the SelfWISE framework.

The execution of the self-stabilizing algorithms is based on
rounds that must be synchronized and a shared node state that
is accomplished by periodical broadcasts. The broadcasts are
scheduled at a random point in time to reduce the number
of collisions. To evaluate the quality of the implementa-
tion, the event inspection of TinyAID is used. Without any
knowledge of the internal structure, TinyAID creates instru-
mentation points in 101 different functions. To investigate
the synchronization of the round timer and the broadcast,
two function calls where selected: SyncTimer.fired and
Paket.send. The resulting event trace is shown in Fig. 9.
The pipe symbol represents the round timer event and the ’×’
the time point of the broadcast.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

node

time
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

×

×
×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

Fig. 9. Event tracing of SelfWISE

This evaluation shows that the synchronization of the round
timer works perfectly and that the node state is broadcasted
at a random point during the middle of each round. The
cyclic patterns of the broadcast were not expected. After
further investigations we found out that the implementation of
the RandomMlcgC component produces insufficient random
numbers when using TOSSIM. In real deployments events
like packet reception and code runtime introduce a different
runtime behavior, so that this effect is not dominant. In
TOSSIM, however, the random numbers create these period-
ical patterns, which leads to an abnormal behavior over time
with reoccurring collisions between the same nodes. Changing
the implementation of the RandomMlcgC components in
such a way that it uses the rand function of the libc in
TOSSIM creates a more randomly distributed message broad-
cast. Without the automated instrumentation and evaluation



support of TinyAID we may have never become aware of this
effect.

The next example evaluation shows the application of state
tracing. A self-stabilizing algorithm is executed whenever a
node sees an irregularity within its neighborhood. To avoid
gratuitous executions the number of nodes that execute the
algorithm is reduced by a Bernoulli trial. The behavior over
time is shown in Fig. 10. The algorithm execution starts at time
53 and stabilizes at 64. The dark rectangle visualizes that in
this round a node has executed the algorithm (done by calling
RuleEngine.abort) and the gray rectangle indicates that
the node wants to execute, but the Bernoulli trial was negative
(RuleEngine_execute).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

node

time
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

Fig. 10. State tracing of SelfWISE

B. Use Case: Routing Protocols

In this section, we will demonstrate and discuss how our
concept of automated packet tracing can be integrated into
already implemented protocols. Therefore, three different rout-
ing protocols to carry out our analysis on automated packet
tracing and the ease of its implementation have been chosen.

The first one is TYMO, an implementation of the well-
known DYMO protocol [4], which is included in the TinyOS
2.x code base. TYMO uses internal message types for route
requests and route replies. These are sent in order to query
and establish a new route, if a forwarding node does not know
where to send a given message. The second routing protocol is
Dynamic Source Routing (DSR) [5], which follows a similar
concept. The third protocol considered is Greedy Routing [6].
Messages are forwarded using the positions of forwarding
nodes and the destination. The greedy aspect is realized by
each forwarder considering only neighbor nodes closer to the
destination and sending the message to the neighbor closest
to the destination. The implementations we used for DSR and
Greedy Routing originate from [2].

As noted in Sect. III-B, tracing packet sending and receiv-
ing is automatically added to the compiled code, if Active
Messaging is used. However, Packet.clear must be called
at the appropriate places in order to make packet tracing

work. The following, general issues must be considered first.
If the routing protocol under investigation makes use of
internal packet types, it must be assured that the corresponding
calls to Packet.clear are performed, whenever a new
internal packet is created. Secondly, routing messages, whether
originated on the same node or received and forwarded, must
be stored as a complete TinyOS message in a buffer. This is
necessary in order to keep message IDs, i.e., packet origin and
sequence number, intact.

Calling Packet.clear for data messages, that are passed
from the application to the routing layer, must be done at
the application layer for two reasons. Firstly, following the
Active Messaging concept, packet clearing should be per-
formed on creation of a new packet. Clearly, data packets
are created at the application layer. Secondly, accurate timing
information about packet creation can only be guaranteed, if
Packet.clear is called upon actual packet creation.

In order to prepare the three routing protocols for automated
packet tracing, few changes and additions had to be applied.
Neither the implementation of DSR nor Greedy did use the
concept of Packet.clear. Hence, the corresponding calls
had to be added for all internal packet types. Furthermore,
both implementations only copied the data part of forwarded
data messages into the buffer, although the latter consists of
complete TinyOS messages. A minor change in both protocols
expunged this problem. These simple and quickly applied
changes enabled the two protocol implementations to support
automated packet tracing. TYMO does not make use of
Packet.clear either, so that the appropriate calls had to
be added. Moreover, it knows but two packet types. One is
intended for internal message exchange, i.e., sending protocol
data, whereas the other one is used for routing messages.
The former uses subtypes that are stored in the actual packet
payload to allow for different protocol message subtypes. As a
result, it is required to edit comparably many lines to make the
different subtypes visible in the trace log. For a first analysis
of our tools, we decided not to take this step and abdicate
tracing of the different subtypes.

Besides preparing the routing protocols, we added the
required calls of Packet.clear upon packet creation to
our test application. We also added consume upon reception
of data messages on the destination node.

C. Performance Metrics

In order to illustrate the power of packet tracing, we will
show and discuss visual and statistical analyses obtained
from automated traces. We have used the routing protocols
introduced in the previous section to show the benefit of packet
tracing. The figures and tables in this section have been created
with analysis tools that take origin, destination and inspected
types as parameters.

All results are based on the same topology of 25 nodes,
where the same two nodes serve as data origin and data
sink. 10 data packets are created by the origin with a period
of 2 seconds. One simulation has been run for each of the
three routing protocols. At this point, it is not our intention



(a) TYMO Flow (b) DSR Flow (c) Greedy Flow

(d) TYMO Energy (e) DSR Energy (f) Greedy Energy

8 9

(g) TYMO Packet Types

9 10 12

(h) DSR Packet Types

13 14 15

(i) Greedy Packet Types

Fig. 11. Comparison between different routing protocols: packet flow, energy consumption and packet types

to actually compare the three routing protocols. We plainly
are concerned about outlining illustrative examples of utilizing
packet tracing for protocol analysis and comparison.

Figure 11 visualizes packet flow and an energy-consumption
equivalent. Packet flow, as depicted in the upper row, shows
the number of packets intentionally sent on each link, i.e., not
counting snooped (overheard) packets. The number of packets
sent between two nodes are used as a linear scaling factor for
the displayed line width of the corresponding edge. From the
visualization it is apparent that TYMO and DSR cause packet
flow in the whole network in order to establish routes. In oppo-

sition to this, Greedy (Fig. 11) causes local packet flow only,
because routing decisions are based upon the position of the
destination and a forwarder’s neighbors. Packet flow between
origin (lower left) and sink (upper right) is considerably higher
than in other regions of the network. Furthermore, the share
of packet flow caused by routing packets can be compared to
that caused by internal routing protocol messages on the actual
data paths (gray versus magenta edge widths).

The mid row of Fig. 11 depicts the number of sent and
received messages per node. This metric can be used as an
energy-consumption equivalent. All figures reveal that energy



TYMO DSR Greedy
Number of Packets

Created Data Packets 10 10 10
Sent Total 68 68 78
Sent Broadcast 24 24 5
Sent Unicast 44 44 83

Involved Nodes
Sending 100% 100% 72%
Receiving 100% 100% 72%
Overhearing 56% 56% 96%

Data Packet Latency [ms]
Minimum 17 24 29
Lower Quartile 23 27 32
Median 26 31 37
Upper Quartile 35 38 45
Maximum 123 144 527

TABLE I
PACKET STATICSTICS

consumption is higher the closer a node is to the actual
data path. This is caused by packet overhearing and internal
protocol message exchange. In opposition to packet flow
observed for Greedy Routing, nodes far apart from the data
path still consume a small amount of energy for overhearing
routing packets.

Another interesting aspect of routing protocols and sensor
network applications is packet type distribution. Here, it is in-
vestigated which nodes in the network are sending or receiving
certain packet types. The lower row in Fig. 11 displays packet
types handled by all nodes in our example topology. In case of
DSR, e.g., only nodes on the data path send and receive packet
types 10 (route reply) and 12 (data packet). In contrast, all
nodes either send or receive packet type 9, which corresponds
to route requests. Note that packet reception here implies that
a node receives a packet destined to itself or to the broadcast
address.

Besides visual analysis, tables with descriptive statistics can
also be derived from the generated message traces. Example
data is shown in Table I. The number of packets sent reveals
major differences between the protocols. Another comparison
depicted in the table is the latency between data packet
creation and their reception at the data sink. Here, it shows
that TYMO produces the lowest latency. The high maximum
latency of Greedy Routing is due to the fact that the imple-
mentation we used from [2] is a reactive one. In the absence of
traffic, no neighborhood information is maintained. Whenever
a node receives a packet, it produces a neighbor request. The
node then gathers information about neighbor node positions
in order to make the correct next routing decision. As pointed
out in [2], this technique is a delay versus reliability tradeoff.

In conclusion, packet tracing enables protocol designers
to gain an in-depth look at key metrics of their protocols.
It additionally allows for easy comparison between proto-
cols, whether using visual representation or plain figures –
whichever seems more convenient or appropriate.

D. Overhead

The results in Table II are showing the overhead introduced
of TinyAID. The simulations are based on the SelfWISE

framework simulating 100 seconds, which means 100 rounds
with one broadcast per round and node. The simulations are
run on topologies from 4 up to 100 nodes. The nodes are
arranged in a grid in such a way that a node in the center has
exactly four neighbors. The simulations are performed with the
original SelfWISE framework and three different instrumented
versions. In the selective version exactly two functions are
instrumented, namely those that are used to evaluate the
results shown in Fig. 9. The partially instrumented code
monitors all functions that are not part of the TinyOS operating
system. In the complete instrumented version every function is
instrumented. The overhead of simulation time is relative to the
simulation time without instrumentation. The number of events
represents the number of entering and leaving events. The
results reveal that instrumentation must performed carefully.
Otherwise the simulation time will increased up to three times.
If only selective functions are instrumented, the introduced
runtime overhead is not significant. The size of the resulting
TOSSIM library depends on the number of instrumented
functions. The selective instrumentation does not increase the
size. The partially instrumentation increases the size from
552 kB by around 1% to 559 kB

Complete instrumentation leads to a non-
functional executable, since the debug messages are
printed before the simulation is setup. So at least
/opt/tinyos-2.x/tos/lib/tossim must be excluded
in order to simulate the instrumented code.

In our simulations of the routing protocols, sending 10 data
packets from one corner of a 25-node network to the opposite
one produced trace files with sizes between 10 and 20 kB. This
amount could fairly be reduced by a more compact way of
trace file layout. However, estimating log file size is difficult,
because the number of packets sent in a network is the major
driver here. It depends on the number of nodes; protocols used
for medium access, routing, etc.; and the application.

Packet tracing causes a two-fold overhead. Firstly, additional
code must be executed in order to log data. In the case of
simulation, this overhead only concerns simulation execution
time. In a real testbed, however, the processor of a node must
execute the tracing code, which may, e.g., change timings or
energy consumption. Secondly, packet size is increased by
currently 4 Bytes. Depending on the data payload size, this
increase may become significant and cause side-effects, such
as increased packet transmission times or packet loss rates.

VI. RELATED WORK

The EvAnT framework [7] and the Rupeas language [8] are
tools for sensor network analysis. Both approaches interpret
a log file as an event collection with each row being an
individual event. Each event is then specified by the column
values. EvAnT and Rupeas feature event set processing, event
set queries, and assertions for testing. The creation of log
files, however, is not part of EvAnT and Rupeas. The system
under consideration has to be instrumented manually with log
file generating code first. In contrast, our approach supports
automated instrumentation for creating log files. By providing



Number Without Selective Partially Complete
of 2 Functions 101 Functions 183 Functions

Nodes Time Time Overhead Events Time Overhead Events Time Overhead Events
4 0.45 0.46 0,03 1344 0.65 0,46 105866 1.58 2,54 615372
9 1.01 1.01 0,01 3024 1.58 0,57 303928 3.74 2,72 1506068

16 1.79 1.82 0,02 5376 2.94 0,64 605924 6.85 2,82 2793508
25 2.79 2.83 0,02 8400 4.71 0,69 998476 11.04 2,96 4465828
36 4.04 4.13 0,02 12096 6.89 0,70 1502018 16.15 3,00 6512520
49 5.52 5.62 0,02 16464 9.53 0,73 2102180 22.31 3,04 8992210
64 7.26 7.33 0,01 21504 12.70 0,75 2819526 29.33 3,04 11864168
81 9.18 9.28 0,01 27216 16.07 0,75 3608232 37.07 3,04 15132452

100 11.36 11.60 0,02 33600 19.93 0,76 4508578 46.45 3,09 18802426
TABLE II

EVALUATION OF THE OVERHEAD INTRODUCED BY TINYAID

the instrumenter with the right code templates, TinyAID is
able to create any specific log file format, in particular those
which might then be used for EvAnT and Rupeas.

The Sympathy [9] and Memento [10] network monitoring
systems, and the concept of passive inspection [11] are fo-
cused on the message communication part of the system. In
Memento and Sympathy the system under consideration is
extended by additional code, which performs failure detection
based on message monitoring. The same sensor network is
then used to report logging data to a specific collecting node.
Passive inspection of sensor networks follows a complimentary
approach to Sympathy and Memento. Message log files are
created by an additional deployment support network where
every node owns two wireless transceivers. One transceiver is
used in order to overhear all wireless sensor network traffic
in the surroundings. The second transceiver, being a robust
and high-bandwidth one, is used to transmit the results to a
specific collecting node.

The presented TinyAID differs from Sympathy, Memento,
and passive inspection. In these approaches system inspection
always has to follow a black box approach, i.e., information
about traffic patterns is used to infer information about code
correctness on nodes. Moreover, there are no guarantees
that all message communication failures are detected. In
our approach code is instrumented directly at the points of
message transmission. In addition, when a irregular behavior
is observed, call-chain logging potentially supports finding the
faulty module handlers directly.

Instrumentation approaches for wireless sensor networks are
going beyond inspection of messages: EnviroLog [12] and
Declarative Tracepoints [13]. In EnviroLog code has to be
annotated manually first and then passed through a prepro-
cessor before the final compilation pass. This preprocessing
approach is comparable with the one presented by the TinyAID
instrumenter. However, in contrast to EnviroLog, TinyAID
exempts the programmer in many cases from touching the
inspected code directly.

In the Declarative Tracepoint approach the high level declar-
ative programming language TraceSQL for code instrumenta-
tion is introduced. Using this instrumentation language, the
user is not required to manually touch any line of code under
consideration. The language allows entering so-called action-

associated check points into the source code. If the check point
is passed and the check point predicate is satisfied, a certain
action is performed. From the perspective of the language
features, this approach appears to us the most general wireless
sensor network instrumentation support. However, in contrast
to the solution presented with TinyAID, the programmer has
no control over what exactly is inserted into the instrumented
code. It depends on the implementation of TraceSQL. In
TinyAID code templates make the inserted code explicit and
give the programmer full flexibility to tailor the templates to
his needs. For example, the way logging is performed in a
TOSSIM simulation may simply be done by using the dbg
function, while logging in a real testbed deployment may
be achieved by another code template for writing logging
information to the serial port directly.

Support for message-flow tracing is another feature that
distinguishes TinyAID from TraceSQL. While in TraceSQL
check points may be added to the send/receive handlers
of the Active Messaging module, there is no way to tag
messages with an additional unique message identifier. In
our approach unique message identification supports tracing
message instances from the creating node to the nodes where
the message is either dropped or delivered.

Other useful debugging approaches presented in the liter-
ature are NodeMD [14] and SNMS [15]. The emphasis of
both approaches is a fine-grained node-level inspection of
failure behavior. NodeMD focuses on specific node failures
covering stack overflow, and lifelock/deadlock situations in
multi-threaded environments. The goal is to catch such failures
and provide the user with diagnostic information, which can
then be used for troubleshooting, before the node becomes
completely unusable. In SNMS the focus is on attribute export
based on instrumenting the code manually. The variables that
need to be exported must be tagged manually. Based on such
tagged variables, the tool provides a query-based health data
collection and persistent event logging system. Fine-grained
node-level debugging versus inspecting system-wide behavior
is the main difference between these approaches and the
TinyAID approach presented in this work.

In this work we devised a major part on automated eval-
uation with visualization features that enables the developer
to capture complex network-wide effects in a visual, intuitive



manner. To the best of our knowledge little effort has been
spent in that direction so far. As an exception, the routing
path visualization concept presented in the Rupeas publication
[8] is close to the spirit of what we mean with capturing
network-wide effects in an intuitive way. Compared to that
visualization concept, we see the concepts presented in this
work as a complement and an extension of a hopefully more
and more growing set of available visualization concepts.

VII. CONCLUSION

In this paper a code instrumentation and evaluation tool
for the TinyOS community is presented. We highlighted the
advantages of automatic instrumentation support over manual
instrumentation and presented a simple but effective way for
automated code instrumentation. The so-instrumented code
produces log information that covers two aspects: logs of the
call chain and message flow. The automatic evaluation tool
based on such logged data, enables a programmer to capture
system-wide behavior in a visual and intuitive manner. In
addition, statistical performance quantities can immediately be
extracted from the generated log files in an uniform way.

The empirical studies performed with TinyAID show that
automated instrumentation and evaluation are a valuable sup-
port for TinyOS-based programming. For instance, a synchro-
nization problem in the SelfWISE simulation was figured out
by just looking at the visual representation of an event trace. In
addition, a set of routing protocols originating from different
programmers are compared. Spending only little effort on
reading the code, the protocols are evaluated, both visually
and also by means of some plain statistical data.

The main empirical studies in this paper were performed by
simulation only. The next development step is to add support
for real sensor network deployments. It is to be considered
how the logged data can be gathered in an effective way and
how to order events system wide when node clocks are not
synchronized. In our future work plan we envision a combined
hard- and software approach that is currently in its initial
design phase, based on the presented conceptual findings in
this paper.

An additional, future project we see is the integration of
other concepts into TinyAID, e.g., by supporting the appropri-
ate log file structure TinyAID may be combined with Rupeas.
Moreover, a future extension of TinyAID may be the use of
the TraceSQL language concept. So far, TraceSQL did not
leave us enough flexibility on which code is added as trace
points; a reason why we chose the code template approach.
In a future extension, however, TraceSQL and the concept of
code templates might be combined.

ACKNOWLEDGMENT

The authors would like to thank René Steinrücken for his
help during the implementation of the TinyAID instrumenta-
tion software.

REFERENCES

[1] P. Buonadonna, J. Hill, , and D. Culler, “Active Message Communication
for Tiny Networked Sensors,” in In Proceedings of the 20th Annual Joint
Conference of the IEEE Computer and Communications Societies (ICC
’01), Anchorage, Alaska, USA, April 2001.

[2] H. Frey and K. Pind, “Dynamic Source Routing versus Greedy Routing
in a Testbed Sensor Network Deployment,” in Proceedings of the 6th
European Conference on Wireless Sensor Networks (EWSN ’09), Cork,
Ireland, Feb. 11–13 2009.

[3] C. Weyer and V. Turau, “SelfWISE: A Framework for Developing Self-
Stabilizing Algorithms,” in Proceedings of the 16th ITG/GI - Fachtagung
Kommunikation in Verteilten Systemen (KiVS ’09), Kassel, Germany,
Mar.2–6 2009.

[4] I. Chakeres and C. Perkins, “Dynamic MANET On-Demand (DYMO)
Routing,” http://tools.ietf.org/html/draft-ietf-manet-dymo-17, Mar. 2009,
internet Draft, Version 17.

[5] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,” in Mobile Computing, Imielinski and Korth, Eds.
Kluwer Academic Publishers, 1996, vol. 353.

[6] G. G. Finn, “Routing and Addressing Problems in Large Metropolitan-
Scale Internetworks,” Information Sciences Institute (ISI), Tech. Rep.
ISI/RR-87-180, Mar. 1987.

[7] M. Woehrle, C. Plessl, R. Lim, J. Beutel, and L. Thiele, “EvAnT: Anal-
ysis and Checking of Event Traces for Wireless Sensor Networks.” in
Proceedings of the IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC ’08). IEEE Computer
Society, 2008, pp. 201–208.

[8] M. Woehrle, C. Plessl, and L. Thiele, “Poster Abstract: Rupeas - An
Event Analysis Language for Wireless Sensor Network Traces,” in
Poster/Demo Proceedings of the 9th European Conference on Wireless
Sensor Networks (EWSN ’09). Cork, Ireland: Springer, Feb. 2009.

[9] Nithya, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the Sensor Network Debugger,” in Proceedings of the
3rd International Conference on Embedded Networked Sensor Systems
(SenSys ’05). New York, NY, USA: ACM, 2005, pp. 255–267.

[10] S. Rost and H. Balakrishnan, “Memento: A Health Monitoring System
for Wireless Sensor Networks,” in Proceedings of the 3rd Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc
Communications and Networks (SECON ’06), Reston, VA, September
2006.

[11] M. Ringwald, K. Römer, and A. Vialetti, “Passive Inspection of Sensor
Networks,” in Proceedings of the 3rd IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS ’07), 2007.

[12] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic,
“Achieving Repeatability of Asynchronous Events in Wireless Sensor
Networks with EnviroLog,” in In Proceedings of the 25th IEEE Confer-
ence on Computer Communications (InfoCom ’06), 2006.

[13] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and L. Luo,
“Declarative Tracepoints: A Programmable and Ppplication Independent
Debugging System for Wireless Sensor Networks,” in Proceedings of the
6th ACM Conference on Embedded Network Sensor Systems (SenSys
’08). New York, NY, USA: ACM, 2008, pp. 85–98.

[14] V. Krunic, E. Trumpler, and R. Han, “NodeMD: Diagnosing Node-Level
Faults in Remote Wireless Sensor Systems,” in Proceedings of the 5th
International Conference on Mobile Systems, Applications, and Services
(MobiSys ’07). ACM, 2007, pp. 43–56.

[15] G. Tolle and D. Culler, “Design of an Application-Cooperative Man-
agement System for Wireless Sensor Networks,” in Proceeedings of the
Second European Workshop on Wireless Sensor Networks (EWSN ’05),
Jan.-2 Feb. 2005, pp. 121–132.


	Introduction
	Problem Statement
	The Need for Debugging Support
	The Need for Generic Evaluation Support
	Limitations

	TinyAID Instrumentation
	Call-Chain Logging
	Message Logging
	Manual Instrumentation

	TinyAID Evaluation Examples
	Event Tracing
	State Tracing
	Accumulation Diagrams
	Statistics

	Concept Evaluation
	Use Case: SelfWISE
	Use Case: Routing Protocols
	Performance Metrics
	Overhead

	Related Work
	Conclusion
	References

