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Abstract—Combining energy harvesting with energy-aware
scheduling enables perpetually operating sensor networks. The
practical realization of this goal yet requires reliable and precise
holistic online energy assessment. While the building blocks—
assessing residual energy, predicting energy intake, and tracing
energy consumption—have been studied in detail, the analysis
of their interaction on a real platform has been neglected. This
paper answers the question, whether these techniques can be
easily joined to give a precise and correct picture of a sensor
node’s energetic state and behavior. For this purpose, we model
the energy flow of a prototype energy-harvesting sensor node
and evaluate the joint performance of state-of-the-art energy
assessment based on a field test. We verify the system model and
show the feasibility of holistic energy assessment, which tolerates
small configuration errors, achievable with a combination of
generic configuration and online calibration. We also analyze the
feasibility of forecasting a node’s future energetic state, and find
that the presented method gives sufficient results for uniformly
distributed consumption profiles.
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I. INTRODUCTION

Energy-harvesting sensor nodes [8], [17] open the
door to unlimited and uninterrupted operation. It seems
that gaps in collected data—reducing the expressiveness
of measurements—and manual intervention for battery
replacement—inferring large costs, logistic problems, and se-
vere intrusion [19], [11]—are things of the past. Yet, non-
intrusive monitoring of phenomena demands devices of tiny
size, which come at a non-negligible cost: the amount of
harvested energy is decreased while it must still satisfy the
average power consumed by applications and algorithms exe-
cuted on the node. Unfortunately, the actual extent of neither
harvested nor consumed energy is known in advance. Energy
consumption depends on difficult to foresee network load, e.g.,
routing services provided by the node. Energy harvest often
depends on the exact positioning of the harvester, since local
and seasonal effects dominate energy production.

Thus, a sensor node must adapt its consumption to the
available energy resources. Several researchers have tackled
this problem [5], [18], [20], [10], [2]. In brief, nodes have to
adjust their schedule or duty cycle to achieve energy-neutral
operation [9], i.e., consumption must not exceed harvest. To
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maintain this principle in times of low harvest, energy must
be buffered in energy-abundant periods. Supercaps have been
frequently used, as they combine small size and cheap prices
with a capacity to back up operation for several days. Reliable
while facile energy reserve estimation is possible [8], [13].

To adapt a node’s duty cycle or find an energy-compatible
schedule, tracking the consumption of a sensor node is manda-
tory. Methods for hardware- [4], [6] and software-based [3],
[7] tracking have been presented recently. Solar cells are
used as harvesters on many platforms [8], [17]. They deliver
sufficient energy with a diurnal pattern, enabling energy intake
forecasts [12], [1], [15], [9] for depletion-safe and smooth
operation with infrequently adapted duty cycles [10], [2], [20].

The tools for holistic online energy assessment are ready,
but existing research has mainly focused on the individual
components and their optimization. However, their interaction
has been neglected, so that three essential and closely linked
questions have not been answered so far:
• How well does joining these techniques work w.r.t. to

giving a precise and correct picture of a sensor node’s
energetic situation and behavior?

• Is it possible to forecast a node’s future energetic state?
• How precise a calibration of hardware components, e.g.,

sensors and consumption traces, is required; or, is indi-
vidual node configuration needless?

This paper makes the following contributions to answer
these questions. We introduce an energy-harvesting supply for
the Iris platform and model its energy flow. We implement
an energy-assessment software layer in TinyOS running in a
five-node deployment with our hardware for three weeks. A
detailed evaluation finally verifies the model and proves the
utility of existing energy-assessment techniques in practice.
We identify the main influencing factors of energy misjudging
and those with low impact on system preciseness. We finally
show under which conditions our model can forecast future
energetic states of a sensor node, which is the fundament of
more advanced algorithms for energy-aware scheduling.

II. ENERGY-HARVESTING POWER SUPPLY

To evaluate holistic energy management in sensor networks,
we built a customized energy-harvesting power supply for
the Iris sensor node. We will refer to this power supply as
harvester. It consists of three building blocks: a solar cell as
energy-harvesting source, a supercap for buffering energy, and
a switching regulator to supply the sensor node with a stable,
constant voltage. The harvester is equipped with a light sensor
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Fig. 1: Energy harvester hardware and equivalent circuit

and a temperature sensor. A picture of the harvester mounted
on an Iris node with removed battery pack is shown in Fig. 1a,
accompanied by a simplified equivalent circuit in Fig. 1b.

A. Harvesting Source

A solar cell with a maximum current of 35 mA and a
size of 39×39 mm2 serves as harvesting source. We chose
a direct charging circuit instead of a maximum power-point
tracker as in [17]. The advantages are a simple, low-cost
circuit and a charging current only depending on the lighting
conditions. The main disadvantage is that the harvested energy
depends on the supercap voltage. The harvester provides a
sensor for measuring the current produced by the solar cell.
This is achieved by measuring and amplifying the voltage
induced by the solar current across a 1 Ω shunt resistor (1%
precision). The result is fed to one of the ADC ports of the Iris
node. The conversion factor of the ADC reading is 15 mA/V.
Unfortunately, the operational amplifier introduces a bias and
a non-linearity for small voltages; both vary from board to
board. A compensation model is discussed in Sect. III-C.

B. Energy Buffer

The harvester is designed for supercaps with a maximum
voltage of Vmax = 2.7 V. Results from the literature [13], [8]
show that supercaps with 25 to 100 F give a good trade-off
between size, capacity, and price; e.g., a 50 F supercap can
operate an Iris node at a 1% radio duty cycle for more than
two days without harvesting energy. The supercap is connected
to one of the node’s ADC ports, so that its voltage and thus
state-of-charge can be read by the sensor node. To protect
the supercap from overcharging, the harvester automatically
disconnects the supercap from the solar cell, if its voltage
exceeds Vmax. Note that it is still possible to measure the
current produced by the solar cell with the sensor discussed
in Sect. II-A.

C. Switching Regulator

The sensor node is supplied by a Texas Instruments
TPS 61220 switching regulator with a constant voltage of
Vn = 2.7 V. We measured a switching efficiency η of 75% to
95% and a cut-off voltage of Vcut = 0.5 V for our platform.

III. ENERGY ASSESSMENT FOR SENSOR NODES

This section discusses methods to (i) assess the super-
cap’s energy reserves, (ii) track the node’s consumption, and
(iii) forecast the harvester’s energy intake.

A. Energy Reserve

There have been attempts to assess the energy reserves in a
supercap, e.g., in [13]. The authors compare the model of an
ideal capacitor with an extended model trying to encompass
leakage effects. The latter introduces an extra amount of
computational complexity paired with additional parameters,
while the benefit reveals itself to be rather small: The model
yields increased precision only for a high supercap voltage.
Jiang et al. evaluate leakage behavior of supercaps from 10 F
to 50 F and conclude that leakage varies from one supercap to
another [8], so that manual configuration would be necessary.

Besides the influence of self-discharge (leakage) on su-
percap voltage, we found no model that incorporates the
charging history of the supercap nor the influence of ambient
temperature. Both influence supercap voltage according to the
data sheets; yet, the exact impact is unknown due to the lack
of research. A method for determining the actual capacity of
a supercap online is presented in [14]. Knowing the actual
capacity is required, as it influences the energy reserve linearly.

B. Energy Consumption

Tracing the consumption of sensor nodes offline, i.e., prior
to deployment, is generally infeasible due to the dynamic
nature of sensor network protocols. Online estimation has been
widely accepted as the standard approach [7], [4], [3].

Hardware-based solutions, e.g., iCount [4], measure the
switching frequency of the regulator many sensor node plat-
forms are shipped with. These approaches exploit the fact
that there is a nearly linear relationship between switching
frequency and input current for a constant input voltage. This
method is not applicable in our case, because we supply the
regulator with a supercap. The regulator’s input voltage thus
ranges from 0.5 V to 2.7 V, so that a more complex model is
required due to the non-linear impact of input voltage (cf.[4]).

Software-based energy estimation is presented and evaluated
in, e.g., [7] and [3]. Each hardware component has a typical
load, which depends on the its state. In a simple model,
components are on or off. More refined models encompass
additional states, e.g., the radio can be off, listening, receiving,
or sending. In order to track the consumption of a sensor node,
three steps must be taken. Firstly, the hardware states have to
be identified and the corresponding load has to be measured.
Secondly, hooks have to be added to the hardware drivers
to track all state changes. Thirdly, timing with micro-second
precision is required to retrieve the node’s consumption by
summing up all load-time products.

Regardless of the tool for assessing consumption, its pur-
pose is to give a more fine-grained view on the energy
consumption of the individual jobs executed by a sensor node.
This knowledge is subsequently used to enable duty-cycle
adaptation and online energy management, e.g., cf. [20], [2].

C. Energy Intake

Obtaining the current energy intake is achieved with a
sensor. Despite possible imponderables regarding sensor cal-
ibration, there is no particular challenge involved. To allow



for sustainable and efficient operation of sensor nodes, past
energy intake recordings can be turned into a forecast [9],
[2], [1], [12], which enables a sensor node to determine an
energy-neutral duty-cycle or job schedule.

The general approach for prediction is to exploit the cyclic
behavior of harvesting sources, e.g., the diurnal pattern of solar
cells. Each cycle is divided into time slots, usually of equal
length. Energy intake in each of these slots is averaged and
smoothed with past values. The resulting values constitute the
forecast. Recent approaches (e.g., [12]) aim at refining the
forecast by weighting future slot values with the relative course
of the current cycle w.r.t. the smoothed course.

IV. SYSTEM MODEL

The simplified circuit of our harvester in Fig. 1b yields a
mathematical model encompassing the three building blocks
(energy reserve, intake, consumption):

Ic = Ih − Ir with Ir =
In · Vn
η · Vc

. (1)

To maintain the general simplicity of this equation and based
on the findings in Sect. III-A, we model the relationship of
supercap voltage Vc and current Ic as an ideal capacitor, i.e.,
Ic = C · V̇c. The resulting system model is

C · V̇c = Ih −
In · Vn
η · Vc

. (2)

A. Predicting the Future Energetic State

If all parameters in (2) are known, predicting the future
energetic system state is possible. This in turn enables effi-
cient while perpetual operation. However, an exact solution
of (2) requires the precise courses of Ih and In. When it
comes to predicting the future state of the system, this is
not the case, particularly because an exact estimate Ih does
not exist in real deployments. We thus make the following
assumptions and simplifications for practical reasons: (i) The
harvester current Ih and the sensor node load current In are
piecewise constant functions, and (ii) the regulator efficiency η
is constant. The first assumption complies with state-of-the-art
energy intake prediction (cf. Sect. III-C) and online consump-
tion assessment (cf. Sect. III-B). It may be possible to describe
regulator efficiency by a step-wise constant function of Vc, but
we did not explore this relaxation.

For Ih = const., η = const., In = const., (2) reduces to an
ordinary, first-order differential equation (ODE) of the form

ẏ = b− a

y

(
y=Vc , a=

Vn · In
η · C

≥ 0 , b=
Ih
C
≥ 0

)
. (3)

In the following, we assume y = y(t) and y0 = y(t0), where
t ≥ t0 are points in time and ∆t = t − t0. To solve this
equation, two special cases have to be considered:

1) For y = a
b , we find ẏ = 0⇒ y = y0

2) If b = 0, the solution is y =
√
y20 − 2a ·∆t

In any other case, this equation has the implicit solution

0 = y−y0 +
a

b
· log

(
a−b · y
a−b · y0

)
−b ·∆t = f(y, y0,∆t) , (4)

which can be solved, e.g., with Newton’s Method

yn+1 = yn −
f(yn, y0)

f ′(yn, y0)
, (5)

for a given number of iteration steps or until an absolute or
relative error is achieved. The overcharging protection (cf.
Sect. II-B) requires manual enforcement of y = Vc ≤ Vmax.

B. Enabled Technologies: Practical Application

According to Sect. III-C, an energy intake forecast consists
of a set of time slots and mean values. Energy intake Ih
does hence not change within a slot. Assuming a constant
average load In in each slot reduces the overhead of predicting
the future energetic state by solving (4) with (5) drastically,
because only one solution has to be calculated for each end
of a time slot, and updates have to be calculated only if a
slot elapses. The results presented in [1] and [15] suggest that
12 to 24 slots per day are sufficient, so that recalculations
are required at most hourly. This approach can be used to
predict the future voltage course of the supercap for a given
average load, but becomes meaningful, only if the following
two questions are answered: How to obtain the average node
load, and how to capitalize on the voltage course?

The first question can be answered with a survey of
existing research, e.g., adapting the (radio) duty cycle [10]
is a common technique to achieve perpetual operation. The
duty cycle directly yields (a lower bound on) the average
power consumption of a node. Task scheduling is another
option, if the power consumption of tasks is determined as
in [20]. Moreover, a system with discrete performance levels
is currently investigated.

Answering the second question is also possible by a look
at existing research. Kansal motivates the principle of energy-
neutral operation [9], i.e., a node must not consume more en-
ergy than it has harvested. Translated to the predicted voltage
course, a node has to make sure that its (predicted) voltage
never falls below a critical threshold and that the present
voltage is conserved w.r.t. to the last voltage prediction.

V. IMPLEMENTATION

To evaluate the system model from Sect. IV in a field
test, we implemented an energy-aware layer and an evaluation
application for our sensor node platform for TinyOS 2.1. This
section introduces its components and their capabilities of
online configuration.

A. Energy Consumption Tracker

We implemented an annotation tool for TinyOS, which adds
function hooks at compile time to the hardware abstraction
layer to keep track of hardware power-state changes. Currently,
the microcontroller (MCU), radio, and LEDs are supported.
The tool traces the consumption of each hardware component
separately with a resolution of µA s. The current draw of each
hardware state is defined in a common configuration file. We
produced a generic current trace by averaging over a selection
of nodes. Table I supports this approach. There are notable



MCU radio LEDs
node sleep adc nr idle active listen red yellow green

1 0.0285 1.195 2.854 6.877 14.435 2.062 1.677 1.827
2 0.0274 1.357 3.002 7.144 14.398 2.047 1.677 1.808
3 0.0285 1.162 2.975 7.325 14.555 2.052 1.684 1.836
4 0.0281 1.211 2.897 8.384 14.795 2.011 1.641 1.795
5 0.0299 1.195 2.862 7.215 14.489 2.058 1.686 1.830
6 0.0298 1.260 2.740 6.810 14.850 2.091 1.654 1.860
7 0.0301 1.229 2.760 6.940 14.780 2.118 1.653 1.853

mean 0.029 1.230 2.870 7.242 14.615 2.063 1.667 1.830
std.-dev. 0.001 0.064 0.099 0.537 0.189 0.034 0.018 0.023

TABLE I: Iris node consumption (mA) in different operation
states. The MCU states cover the consumption of the radio-off
state, transmitting is not considered separately

deviations only for an active MCU. Note that we add an extra
10 µA to the MCU sleep consumption to account for self-
consumption of the harvester, see Fig 2a.

The time spent in a state is obtained by running one of
the 16-bit Iris counters with a resolution of 8 µs. This counter
is synchronized with the asynchronous milli-second timer via
hardware counter capture. This concept only works with the
internal 8 MHz RC-oscillator instead of the crystal, which
requires a few ms to wake the node and thus makes syn-
chronization impossible. Note that synchronization is required,
because only the asynchronous timer is running when the node
is in sleep mode. Our approach is inspired by [16].

The regulator input load Ir is obtained by using (1). This
conversion is not performed per state update, since this would
increase overhead due to another multiplication of 32 bit
values. In contrast, the software uses a constant regulator
efficiency of η = 0.85 and performs the conversion only upon
application request. Figure 2b shows a representative efficiency
trace for our harvester. The chosen efficiency constitutes the
approximate mean value for different input voltages and load
profiles. It is generally possible to improve this approach by
performing the conversion with a periodicity of a few seconds
or minutes and using interpolated values of η from a look-up
table w.r.t. the current Vc: Vc changes slowly, if the node is
sleeping most of the time. However, this approach requires a
precise and per-node configuration of the look-up table.

B. Energy Intake Assessment

Energy intake of the solar cell is measured with the sensor
described in Sect. II-A. The relationship between solar current
Ih and the amplified voltage across the shunt resistor Vs ex-
hibits a notable variance among individual boards. To prevent
an individual configuration of each board, we devised a self-
configuring method using an empirically derived model:

Ih = α · (Vs−Vb)− (α·(Vs−Vb) + β ·Vb)
−1

+(β ·Vb)
−1 (6)

The parameters α and β have been determined empirically
and are the generic part of the model. Note that α is close
to the theoretical linear gain of the amplifier (cf. Sect. II-A).
The parameter Vb is the bias of each harvester and is adjusted
automatically during runtime—it reaches its final value in the
first period of zero energy intake, e.g., at night. Figure 2c

compares the model with real sensor traces (ground truth)
for selected harvesters. Although the model produces average
absolute errors of 0.6 mA on some harvesters, it still achieves
a better precision than a simple linear approach, which fails
to capture the non-linearity near Vb.

C. Evaluation Application

We implemented an evaluation application to record the
individual components of our energy flow model, i.e., Ih, Vc,
In. Each node sends a report to a base station every 30 s
containing the supercap voltage Vc, the ambient temperature,
and the mean solar current Ih since the last report. To analyze
supercap leakage and temperature dependency, one additional
pre-charged supercap each is sampled every 30 s using a free
ADC port. Consumption per component (MCU, radio, LEDs)
is also attached. The nodes are placed outside on a window
sill (rain-protected by plastic boxes) to allow for analyzing the
impact of temperature changes.

It is only possible to evaluate the model for Vc<Vmax,
because we cannot assess the amount of lost energy when the
overcharge protection is effective (cf. Sect. II-B). Therefore,
consumption In must be large enough to prevent this case. On
the contrary, In must be small enough to ensure Vc>Vcut
in order to prevent node downtimes and resulting gaps in
recorded data. We combine this issue with our intention to
evaluate the system model and feasibility of holistic energy
assessment for varying loads In: each node simulates a duty-
cycle adaptation by leaving on its radio for at least 250 ms
and at most 25 s after sending its state report. The actual
extent of this time is increased, if Vc>2.0 V, and decreased, if
Vc<1.5 V. The in-/decrease operation is performed every 30 s.

To analyze the impact of different loads, each node turns on
an LED when performing an ADC read operation. In addition,
all possible MCU states are tracked. This is particularly im-
portant for two reasons caused by the TinyOS implementation
of the Iris platform: Firstly, the MCU is always idle when
the radio is on, and secondly, the 8-bit asynchronous timer
requires the node to wake up briefly every 230 ms to cope
with counter overflows.

VI. EVALUATION

This section evaluates our energy model, the interaction of
energy-assessment components in praxis, and the quality of
predicting a node’s future energetic state.

A. Experimental Setup and Methodology

The evaluation is based on deployments of five nodes
equipped with our harvester and a 50 F supercap. All nodes run
the energy management software and evaluation application
introduced in Sect. V. They are placed outside on a window
sill (rain-protected by plastic boxes) to allow for analyzing
the impact of temperature changes. Overall runtime of the
experiment was 3 weeks.

Our analysis is based on 10 min snapshots and averages,
resulting in more than 3 000 samples per node. This timing
gave a good compromise between sufficient resolution and
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noise-reduction—e.g., the change of Vc is smaller than ADC
noise for very short timings. All plots are generated directly
from these values or derived using the system model equations
(cf. Sect IV). The empirical supercap current results from
Ic = C ·∆Vc/∆t. The capacity C was determined online by
the sensor nodes at the beginning of the deployment according
to the method suggested in [14]. We calculated model errors
by means of Ih − Ir − Ic, representing the imbalance of (2).
Because Ic may be zero, we did not calculate relative errors.

B. Model Evaluation and Component Interaction

1) Nominal Capacity vs. Actual Capacity: The actual
capacity of a supercap may deviate considerably from its
nominal value, e.g., due to manufacturing tolerances or aging
effects. The online self-calibration in our field test produced
values between 49.5 F (node 2) and 44.2 F (node 5). We thus
observed a maximum relative error of 11.6% w.r.t. the nominal
50 F. This result proves the need of online self-calibration.

2) Supercap Leakage and Charging Behavior: Our system
model does not encompass supercap leakage and temperature
dependency (cf. Sect. IV). To assess this assumption, we
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Fig. 4: Theoretical (dashed) vs. empirical (solid) charging
behavior of a 50 F supercap with constant supply of 15.2 mA

evaluated the traces of the five additional supercaps. Their
voltage course is shown in Fig. 3. The considerable voltage
drop on the first day equals an average leakage current of
80 to 250 µA (not visible in the plot due to scaling). This
is caused by reorganization effects, which depend on the
charging current, initial voltage, and charging time. We further
investigated these effects by charging a supercap with our
harvester. This supercap has not been used—i.e., charged
or discharged—within several days before the experiment. A
small, constant charging current linearly increases voltage, as
shown in Fig. 4a, but the observable voltage overshoots the
expected value. The empirical current Ic is thus larger than
expected (see Fig. 4b). After charging, the observed voltage
decreases and nears the expected value. Voltage overshoot and
reorganization cancel out within a few minutes.

Self-discharge after day 2 (in Fig. 3) is low and shows
decreasing variation. Leakage depends on capacity—it is more
than twice as large for the 100 F supercap—and is affected by
the ambient temperature. Figure 5 portrays the influence of
temperature on leakage with higher time resolution. Although
the temperature gradient and leakage current appear to be cou-
pled, the effect of temperature leads to tiny leakage currents
most of the time. Only large temperature gradients induce
currents of more than 30 µA, which is roughly the current
consumption of Iris nodes in the sleeping state. Moreover,
large temperature gradients occur during day time, in which
the solar cell produces a current at least two orders of
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magnitude in excess to that induced by temperature changes.
Finally, the capacity C of the individual supercap is not known
precisely, i.e., the error introduced by estimating C will easily
exceed any influence of leakage and temperature.

Adding temperature compensation increases accuracy of
residual energy assessment slightly but does not improve
overall model precision significantly: leakage is rather small,
hard to model, and has less influence than calibration errors.

3) Consumption vs. Supercap Current: To analyze the
accuracy of the energy consumption tracker, we made an ad-
ditional indoor run of our field test, in which we disconnected
the solar cells at Vc ≈ 2.2 V. The results for one node is
depicted in Fig. 6. They indicate that the error is less than
1 mA in each 10 min window. During heavy consumption in
the first 25 min, the error is mainly caused by small errors
in the actual capacity and modeling η as a constant, generic
value. The errors for lower consumption are predominantly
caused by measurement noise of Vc, which is evident from
the toggling errors and unsteady voltage course. Under these
circumstances, consumption tracing matches supercap voltage
and current development.

C. Accuracy of Holistic Online Energy Assessment

The previous analysis shows that our system model holds, if
either the solar cell is disconnected (only-consuming) or there
is no consumer (only-charging). In both cases, Ic matches Ih
and Ir with low errors, respectively. To achieve holistic online
energy assessment, the system model must hold, if charging
and consuming occur at the same time.

1) Case Study: Figure 7 shows the holistic energetic state
of node 1 on day 8 of the field test. The system model
produces tolerable errors in all situations of the day, with

three exceptions. Firstly, the error is high for large absolute
values of Ic, if Ir is large at the same time. This can be
explained by configuration and calibration errors regarding η
and C. Both factors influence Ir and Ih linearly (see Sect. IV).
The current sensor is another root of error, since we observed
smaller errors for the experiment with disconnected solar cell.
This is evident from the peak errors in the period around
11:30, where Ir≈ 0 mA and Ih≈ 16 mA. Secondly, the error
is large, when Vc cuts across 2 V or falls below 1.5 V, the
thresholds for consumption adaptation. These errors show the
inherent, yet intentional error of the model: linearization and
averaging. The current Ir and Vc are reciprocal: The higher Vc,
the lower Ir, and vice versa. If a node switches, e.g., from low
consumption to high, enduring consumption while Ih�0, the
linearized model using averages produces large errors. If the
consumption changes moderately, e.g., at around 13:40, the
error is considerably smaller. Thirdly, the errors before 7 h and
18 h stem from too large readings of Ih, which we verified by
covering the solar cells for a few minutes.

The presented trace substantiates the applicability of the
model. Yet, if the current consumption is unevenly distributed
while the solar cell produces large currents, errors of a few
mA result. The practical importance of these errors is small in
many application scenarios. In contrast to our field test, radio
duty cycling shows an even distribution of consumption.

2) Overall Precision: A per-node error analysis is shown
in Fig. 8a. Despite hardware deviation, the overall results are
homogeneous, thus verifying the applicability of the model.
Medians and quantiles are similiar for all nodes, and 80%
of all errors are in a narrow region. Large errors stem from
short times of massive changes of the consumption profile. The
figure reveals an error bias (non-zero median) for some nodes.
The error distribution (mean values and standard deviations)
for the three current components is shown in Fig. 8b to 8d.
Errors w.r.t. Ih are small and mostly positive, explaining the
error bias. For Ic > 0 mA, which basically corresponds to Ir≈
0 mA, errors are small with low deviation, thus complying with
Sect. VI-B2. Large values of Ir produce large errors. Node 1
exhibits considerably better accuracy than node 5 for heavy
consumption. Since both nodes have a similar consumption
profile and regulator efficiency, the capacity used with node 5
has presumably decreased during the experiment.

D. Feasibility of Prediction

To answer the question, whether predicting a node’s future
energetic state is possible, we applied the method presented
in Sect. IV-A. We ran one experiment with 24 and 144 time
slots each per day. Capacitor voltage Vc was predicted using
the consumption and harvesting traces from the field test,
but we removed the bias of the solar current sensor. We did
not use harvest prediction, because we aim at evaluating the
general practicability of our method. Predictions are calculated
for one day in advance at the beginning of every slot. For
the prediction of the first slot, the algorithm uses the current
supercap voltage for y0, see (5). The following predictions
iteratively use the result of the previously predicted Vc.
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Fig. 9 shows the 24 h-forecasts generated at midnight for
three days—day 2 is the same as in Fig. 7. The figure does
not show prediction updates in a day, i.e., all predictions have
been created at midnight of the corresponding day. Prediction
works fine in the early hours of each day. Note that without
removing the solar current sensor bias, predicted values of Vc
would be too large. The prediction for the third day produces
a maximum error of 0.1 V (even for only 24 slots), which
is a quite accurate result considering error propagation and
calibration errors. Predictions start to fail as soon as the
consumption of the node changes massively when touching
the 1.5 V and 2 V thresholds, respectively. The more of these
changes occur, the larger the prediction error becomes. As
discussed previously, the absolute model error exceeds 2 mA in
these cases, resulting in a minimum voltage error of 0.36 V in
60 min (24 slots) for a 50 F supercap. The underlying problem
is visible in the close-up (right subfigure) of the second day.
Prediction is based on the average consumption of a few mA,
but the real consumption course leads to a different picture:
Directly after time A, consumption is suddenly and heavily
decreased (Vc is falling and stabilizing shortly after passing

the 1.5 V threshold at time A). Consumption stays low until
reaching the 2 V threshold shortly before time B, when it is
heavily increased (Vc quickly falls again). Since the major
portion of consumption occurs close to time B, the solar cell
charges the cap to a larger Vc, so that Ir is much smaller, cf.
(1). Unlike predicted, consumption occurs in a more efficient
power point. From time B to C, the effect is smaller, as
consumption is more symmetric.

Estimating a sensor node’s future energetic course is fea-
sible, because reasonable results are achieved even for small
errors of the input variables. The model only fails in case
of large errors or heavy, unevenly distributed node loads—
i.e., long periods of extremely high current draw followed
by periods of low load. However, this situation is unlikely in
sensor networks with tiny-sized nodes running adaptive duty-
cycling and energy-management algorithms aiming at evenly
distributed consumption and stable operation.

E. Portability and Limitations of Results

The presented results are not restricted to our hardware. In
contrast, the observations regarding supercap leakage, charging
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behavior, and temperature dependency are valid for similar
consumption profiles. Software consumption tracking will
yield comparable results for other combinations of sensor
nodes and low-power regulators, since our results comply with
previous research. We assume that our system model holds
for similar hardware designs with direct charging circuits—
maximum power-point tracking chargers are not supported.

Predicting a node’s future energetic course (e.g., its super-
cap voltage) is generally feasible, but harvest forecasts are
required. Inspired by [2] and the fact that forecasting cannot
be exact in a real-world deployment, we think that conservative
forecasts should be used, making energy excess more likely
than an energy deficit, which might not be compensated on
a cloudy or rainy day. In addition, energy-neutral operation
has to be defined in a more practical context: How does a
predicted, energy-neutral voltage course look like?

VII. CONCLUSION

This paper contributed to closing the gap towards holistic
online energy assessment. We presented a tiny, low-cost energy
harvester with a solar cell, supercapacitor, and power-efficient
switching regulator. We derived an energy flow system model
and devised a method to enable predicting a node’s future
energetic state. This method allows an implementation suit-
able for resource-constrained sensor nodes. We implemented
an energy assessment layer, based on state-of-the-art energy
assessment techniques, for TinyOS and ran a five-node field
test for over three weeks to collect real energy traces.

Our evaluation verifies the presented energy model and
supports practical collaboration of energy assessment tech-
niques. It shows that online capacity self-calibration on each
node is feasible and also required: We experienced a maxi-
mum deviation of nominal and actual capacity of more than
11%. Our model simplifications hold: temperature influence
and supercap leakage as well as per-node configuration of
consumption and regulator efficiency can be neglected. To
obtain a valid picture of a node’s future energetic state, precise
measurements of the energy intake and smooth consumption
profiles are essential. Unevenly distributed consumption pro-
files result in erroneous predictions. This can be avoided by
updating predictions upon heavy consumption changes. We
find that conservative energy intake forecasts can be paired

with our model to derive duty cycles or task schedules ensuring
effective while perpetual node operation.
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