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ABSTRACT
The restricted energy budget of energy-aware and -predictive sen-
sor nodes demands algorithms for adaptive duty-cycling and task
scheduling. However, their comparison and development is hin-
dered by the lack of reproducibility of environmental conditions,
such as solar radiation. To debug their behavior efficiently, it is
also key to replay conditions in which the algorithms react unex-
pectedly in the laboratory. To investigate real-world issues such as
dust or pollen, we enable replaying recorded lighting conditions
by building an affordable light box. Our self-developed control
circuit and high-power LEDs allow us to repeatedly replay envi-
ronmental illumination data through previously collected and also
artificial current and voltage traces. By using the on-board ADC
of the harvester, we are able to replay the conditions exactly as
seen by the sensor node. We achieve replaying accuracy below
the limits of the sensor node’s sensing circuitry, which enables
us to directly compare the behavior of nodes running different
energy-aware and -predictive algorithms.

CCS CONCEPTS
•Computer systems organization→ Embedded and cyber-phys-
ical systems; • Hardware→ Power and energy;
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1 INTRODUCTION
The deployment of self-sustained wireless sensing devices for cyber-
physical systems (CPS) powered by solar energy aims at reducing
maintenance effort and achieving placement flexibility. However,
energy-harvesting devices rely on environmental conditions that
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Figure 1: Light box with high-power LEDs; full brightness
yields 75mA at the solar panel with the used harvester; self-
developed control circuit and temperature monitoring.

experience frequent changes. Forecasting the multiple factors of so-
lar radiation such as clouds, local shadowing and seasonal changes
draw attention in research, e.g. in [11], [3] and [9].

Since CPS devices have limited dimensions and an intermittent
supply with average intake typically below consumption of fully
enabled hardware, their energy resources are restricted. Algorithms
adjusting a device’s duty cycle, such as [8] or [10], aim at using
these resources efficiently.

Comparing these algorithms under equal conditions is hardly
feasible in practice: days with equal solar radiation profile are rare
and impossible to predict. Especially situations of further interest,
e.g. an unexpectedly decreasing energy intake, are hardly repro-
ducible. However, for debugging and optimization, understanding
the potentially wrong behavior of algorithms is key for improving.
Consequently, the sensor node’s harvester has to be fed by an entity
offering: stable conditions in repeated experiments, accuracy within
the limits of the sensor node’s sensing circuitry and easy-to-use
exchange of replayed scenarios.

The authors of [6] and [2] substitute solar cells or RF harvesters
by controllable current and voltage sources, which allows them
to replay previously recorded current-voltage traces. Despite be-
ing accurate, their approach is not to replay already happened
corner cases; e.g. a failed long-term test. If this situation can be
exactly replayed afterwards in the laboratory as observed by the
sensor node, additional options of debugging can be applied and
consequently modifications in the algorithms can be tested under
controlled circumstances.

While reproducing current-voltage traces is sufficient in most
cases, practical issues of solar cells and reaction of the sensor nodes
cannot be modeled: e.g, dust or pollen may reduce energy intake
in reality and also smaller damages can only be investigated in
laboratory with the solar cell. Therefore, a manual emulation of
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these real-world issues should be possible. Additionally, solar cells
experience slow transient processes in rapidly changing lighting
conditions; investigating these issues without the need for complex
changes in hardware structure leads to a deeper insight of the
behavior of solar-energy harvesters. Thus, a solution is needed
for replaying recorded real-world lighting conditions providing
the same solar energy-harvesting conditions, which should be as
closely to the scenario seen by the energy-aware sensor node.

Furthermore, while energy-harvesting sensor networks become
wide-spread, their joint energy consumption draws more attention.
A key question is how to coordinate network tasks considering
the joint energy budget of multiple nodes. E.g, spatial monitoring
resolution might be reduced in times of low energy intake. Conse-
quently, investigating the cooperation between energy-harvesting
nodes experiencing the same or even different environmental con-
ditions is of high interest. Thus, a replaying solution has to be
accurate but also affordable to enable researchers to build more
of them to form an energy-harvesting replaying network. Achiev-
ing this is possible using a simple circuitry with affordable regular
hardware parts.

This leads to the development of our light box, depicted in Fig. 1,
which uses high-power LEDs, is remotely configurable and uses
affordable off-the-shelf hardware components. The light box is able
to replay already recorded lighting conditions from the environ-
ment but also artificial traces through current and voltage traces
by a sensor node to enable subsequent testing of energy-aware and
-predictive algorithms in the laboratory.

We used our prototype harvester presented in [5] to calibrate the
platform to ensure the replayed scenario is as close to the originally
recorded real-world situation as possible. In consequence, no special
sensing equipment is needed for the presented accuracy: only a
communication channel between lighting control and harvester
inside the box is needed to calibrate and start emulations.

The rest of the paper is structured as follows: First, we introduce
the goals as well as hard- and software structure of the light box.
Second, we show techniques to achieve the accuracy in the range
of the harvesting platform and third, we evaluate the performance
of the light box concerning reaction of the energy-aware sensor
node.

2 THE BOX
The varying nature of environmental energy resources demands
new challenges on duty-cycling and task scheduling algorithms.
However, if an oddity was observed during a long-term test, it is
hard to rebuild the exact environmental conditions to investigate
changes in the algorithm. If the environmental conditions were
monitored, e.g. a wireless sensor node reports its observations on
solar radiation and residual energy level regularly, they can be
rebuilt in the laboratory.

Our goal with the light box is to take these real-world data as
input and reproduce them so accurately that the sensor node inside
the light box experiences the same situation as outside. Further-
more, we want to replay these situations multiple times to alleviate
uncontrollable effects, such as varying wireless channel quality.

In this section, we highlight the system structure of our light
box and present the utilized hard- and software.

Raspberry Pi

web gui SQL database

trace as csv file

trace
controller

ADC on
harvester Arduino

LED driver

UARTI2C

PWM

Figure 2: System structure of the light box; input of traces
via web page, storage and trace control are hosted by a Rasp-
berry Pi; hardware PWM for LED control is provided by an
Arduino Nano.
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Figure 3: Temperature difference to ambient temperature at
heat sink; junction temperature at LED is expected to be 60 K
higher; passive cooling insufficient.

2.1 System Structure
We used our harvesting platform presented in [5] to record real-
world lighting conditions through solar current and capacitor volt-
age traces during a long-term test. It is also possible to feed custom
traces to evaluate corner cases or performance in situations of spe-
cial interest. These traces contain triples of delivery time, solar
current and capacitor voltage.

As shown in Fig. 2, these traces serve as input for the trace
controller, which runs on a Raspberry Pi. It is powerful enough to
host the easy-to-use web GUI and the SQL database and, for future
versions, is capable of handling multiple traces in different boxes at
the same time. This gives us the flexibility to create multiple boxes
with just one single trace controller. Additionally, it is capable of a
variety of communication protocols such as I2C or UART.

However, the PWM signal for controlling the LEDs might be
unstable if it is generated in software by an operating system han-
dling other processes. Thus, we integrate an Arduino Nano, which
only receives commands via UART and adjusts its output PWM
duty cycle upon reception of the configuration command.

Tomaintain a still compact design, we developed a control circuit
board, which hosts all hardware parts needed for operation of the
light box. This control circuit and its components are explained in
the following.
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control and status panel

database access

trace review

Figure 4: GUI allows comfortable upload of recorded traces via web browser as csv files; traces can be reviewed after upload;
system control allows monitoring of progress and experiment control.

2.2 Hardware
The control circuit board of our light box hosts four major compo-
nents: a Raspberry Pi, an Arduino Nano, a 40V DC-Converter and
a LED driver. Since a single power supply for the whole control
circuit increases the manageability of the light box, we need a down-
converter providing 5V for the Raspberry Pi. The Arduino is di-
rectly supplied by the Raspberry Pi. Control commands are sent via
UART to the Arduino Nano, which generates the PWM signal with
adjustable duty cycle to control the LED driver Recom RCD-24-0.70.
This driver allows us to control the current through the LEDs and
consequently illumination level accurately.

Two high-power LEDs of the Cree MK-R J2 series [4] are served
per LED supply string with forward voltage of 11.7V at 700mA.
Their light temperature of 6200 K is close to what is observed in
direct sunlight (6000 K to 6500 K). We also plan to integrate LEDs
with different light temperatures, to allow for emulation of the
different light phases during a day. The whole circuit board hosts
up to five strings with up to ten LEDs, which allows us to extend
the box in future versions, e.g. to support harvesters with larger
energy intake.

To increase the lighting yield, a reflector is used to steer the
beam of the LEDs towards the solar panel. We found this increases
the achievable solar current by up to 25%. With reflector and two
high power LEDs, we are able to achieve a harvester output current
of up to 75mA with our hardware.

To keep the internal temperature of the box at a low level, an effi-
cient heat dissipation from the LED junction is needed. The authors
of [6] also found that this influences their repetition accuracy. Our
setup uses a conventional CPU heat sink with active cooling. To

attach the LEDs to the heat sink, heat conductive tape was not suf-
ficient. Since the tape only offers a heat conductivity of 1.4W/mK,
the LEDs quickly started overheating. Replacing this thermal tran-
sition by regular thermal paste solved this issue. As displayed in
Fig. 3, the difference between heat sink and ambient temperature
quickly rises beyond 15 K without active cooling. By calculating
an equivalent thermal circuit, we deduced that the temperature
difference between heat sink and LED junction is approximately
60 K. With an ambient temperature of 25 ◦C, a heat sink tempera-
ture difference of 15 K is equivalent to a LED junction temperature
of approximately 100 ◦C. Since this already influences the lifetime
of the LED and the brightness level, we opt for an active cooling
solution. We tested two different voltage settings: the fan runs at
its maximum speed at 12V but 5V are directly available on our
control circuit board. Both voltages provide a sufficient cooling, so
we decided to use 5V to save additional voltage converting circuits.

With control modules and two LEDs at maximal brightness, the
box consumes 21W. The total bill of material is around e 110.

2.3 Software
A key requirement of the light box is its remote configurability. The
Raspberry Pi hosts a web page with GUI for the light box control,
which we show in Fig. 4. In the control panel area, the user can start
and stop the experiment, perform a new calibration or shutdown
the whole system. Status information such as progress, remaining
time as well as heat sink temperature can be monitored during
calibration or experiment. Furthermore, the system is automatically
shut down if the LED temperature exceeds a threshold. Solar current
traces from previous experiments can be uploaded comfortably via
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Figure 5: Calibration trace links PWM duty cycle and solar
current; LEDs start working above 18% PWM duty cycle; be-
tween PWM steps, harvesting circuit experiences transient
behavior manifesting in tt ; we observed tt,max = 2.93 s.

web browser in csv format and are stored in a SQL database for
later access. They can be checked before starting the experiment in
the trace review area to ensure the correct data is loaded.

Reliable communication between web GUI and lighting control
is ensured via TCP sockets. Before starting a newly loaded exper-
imental trace, the box is calibrated, c.f. Section 3.1, to match the
PWMvalues and the current. To replay recorded and artificial traces
accurately, further steps during calibration are necessary which we
explain in the following.

3 TECHNIQUES FOR ACCURATE REPLAY
To replay recorded situations, we use the same hardware platform
for recording, calibrating and replaying. We achieve comparability
by applying two techniques before starting any experiment which
we explain in the following sections.

3.1 Accurate Calibration
We control the lighting conditions in the box by applying a distinct
PWM duty cycle to the LED driver, which regulates the current
through the LEDs. The resulting light generates current at the solar
panel, which charges the supercapacitor and can be monitored by
the harvester of the sensor node inside the box.

Before starting the experiment, a calibration is needed to map
PWM values to the desired lighting conditions. The calibration
curve differs upon used solar cell, distance between LEDs and solar
panel and positioning of the solar cell inside the box or the illumi-
nated area on the solar panel, respectively. Since exact placement
of the harvester cannot be ensured between experiments, e.g. after
flashing a new software on the sensor node, we decided to calibrate
the lighting conditions before each experiment.

The calibration procedure works as follows: each PWM value is
applied for a calibration time tc . At the end of this timespan, the
Raspberry Pi reads the solar current and the capacitor voltage from
the ADC of the harvester and stores them in the so-called PWM-
current map. We display the resulting calibration trace in Fig. 5.
The difference between measured and ideal curve is mainly caused
by non-linear behavior of the Cree LEDs, which is also treated in

V

I

vnv̂k

îk
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voc

∆vn

∆in
m

Figure 6: Cap voltage v̂k during calibrationmight differ from
voltage vn in replayed trace; instead of wanted current in ,
îk is generated; before replay, the trace is compensated by
applying an offset factor ∆in to each trace point.

the data sheet [4]. Due to the minimum current of the LEDs, a
PWM duty cycle of approximately 18% is needed for the lowest
illumination level. As our box uses an Arduino Nano to achieve
real-time PWM control, values between 0 and 255 are available
for adjusting the duty cycle and the lighting level in our box, re-
spectively. Even with wasting a fifth of the PWM values, at full
brightness we achieve a step size of 0.36mA , which is equal to
3 steps of the solar harvester 12 bit-ADC.

Due to the widely studied transient effects of solar cells during
calibration, e.g. in [1], a careful adjustment of the calibration time
is needed. We define the transient time tt as the time difference
between applying a new PWM signal and stabilizing of the solar
current. A stable current is assumed when five subsequent samples
at 100ms sampling interval give the same ADC value. During our
calibration tests, we observed a median and maximum transient
time of tt,median = 1.86 s and tt,max = 2.93 s, respectively. Applying
a calibration time of tc = 3 s to each of the 256 PWM values yields
an overall calibration time of 13min.

3.2 Compensating Power Point Shifting
Our prototype harvester presented in [5] uses a direct charging
circuit for the supercapacitor; thus, the voltage of the capacitor
influences the power point of the solar panel and consequently
the amount of harvested power. In future, we also plan to ensure
compatibility for solar harvesting platforms using MPPT devices
and algorithms.

During calibration, the load at the solar cell is given by the
voltage of the supercapacitor. The load voltage influences the power
point of the solar cell and thus the current which is stored in the
PWM-current map during calibration. During replay, the capacitor
voltage might differ from the voltage during calibration; thus, the
generated current is different. During replay, a PWM value with an
expected current is applied, but since the capacitor voltage changed,
the observed current differs from the expected current due to the
calibrated PWM-currentmap. During compensation, we are looking
for the current difference between calibrated value and recorded
value: in consequence, a higher or lower PWM value has to be
chosen than originally expected.

We depict this issue in Fig. 6. Our recorded solar traces consist of
n triples containing time, solar current in and cap voltage vn . The
PWM-current map contains k triples, k ∈ [0, 255], containing PWM
value k , the cap voltage v̂k and the generated solar current îk . Since
it is expected thatvn , v̂k , we observe in − îk = ∆in . Consequently,
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Figure 7: Relative difference between maximal current and
observed current at shown cap voltage; less current can be
drawn from the solar cell with increasing voltage; linear
curve of the median gives gradient for compensation.

the observed solar current during replay may be smaller or larger
than expected. Ifvn is not closely located to the open circuit voltage
voc, an approximately linear dependency can be found: we can use
the known voltage difference ∆vn to calculate

∆in =m · ∆vn =m · (vn − v̂k ). (1)

After calculating ∆in , we choose a compensated PWM value for
the current in + ∆in .

To obtain the gradient m, we recorded current-voltage traces
at different illumination levels. We display the results in Fig. 7.
Note that we normalized the values to the maximum solar current
of the corresponding illumination level to compare them side-by-
side. The switching regulator of our harvesting platform works
with capacitor voltages down to 1V, which determines our lower
limit. The solar cell has an open-circuit voltage of 4V whilst the
supercapacitor voltage is rated at a maximum voltage of 2.7V. This
ensures the condition that vn is far off voc.

We obtain a constant solar current by applying a constant illu-
mination level and measure the current from the solar cell into the
capacitor using a 1Ω measuring shunt. The voltage at the measur-
ing shunt is amplified and sampled with the 12 bit-ADC on-board
the harvesting platform.

To compare the different illumination levels, we calculate the
difference towards the current at 1V cap voltage and normalize
the difference by dividing by the maximum current. Based on all
data points depicted in Figure 7, the linear curve fitting yields a
median relative gradient m′ of 0.26 %/V. Note that m′ has to be
multiplied by the maximum current to obtainmwhich is mandatory
for our compensation technique. We also observe a higher relative
gradient for higher illumination levels, e.g. for 100% we observe
up to 0.45 %/V. Using ∆vn = 1.7V and a current of 75mA yields
∆in = 0.57mA. Since this is already in the range of the step size
and thus emulation capability, we expect the influence to be minor
compared to the right choice of the calibration time.

4 RESULTS AND PRACTICAL MERIT
In this section, we show the impact of our different calibration
and compensation methods and evaluate the repetition accuracy of
subsequent experiments.
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Figure 8: Difference between replayed current trace and ob-
served input at harvester; charge is summed up error during
replay; a higher calibration time and compensation of cap
voltage difference is needed to increase accuracy.

4.1 Calibration Methods
We display the benefits of the compensation method in Fig. 8. We
compare the overall charge fed into the charging circuit during
the replay against the charge of the recorded trace. Since most
energy-aware duty-cycling algorithms, e.g. [3] or [8], evaluate the
battery level of a node, we are interested in the amount of charge
fed into the storage unit at the end of the experiment. The same
sensor node and harvester is used throughout all experiments.

With short calibration time of 1 s, the charge difference at the end
of the simulation is 0.52mAh, which results in a voltage difference
of 37.44mV with a 50 F capacitor.

Using a calibration time per PWM value of 6 s yields a charge
error of 0.01mAh. With the total amount of charge fed during the
emulation of 17.23mAh, this results in a relative error of 0.58%. The
voltage difference with the used 50 F capacitor is 7.2mV.

The compensation method presented in Section 3.2 yields a
charge error of 0.001mAh, leading to a cap voltage error of only
0.72mV. Since the ADC compares the capacitor against a reference
voltage of ±4.096V, this result is already below the accuracy which
is used for the energy-aware algorithms.

The practical merit is also shown in the difference to the original
current traces: the observed trace with the developed compensa-
tion in mean only differs by 0.62mA, which is in the range of the
measurement accuracy. The on-board 12 bit-ADC with ±2.048V
reference voltage has a resolution of 0.12mA. Note that the ADC
uses half the reference voltage for solar current compared to cap
voltage measurements to obtain more precise results.

This underlines that, within the accuracy range of the used
harvester, our box is able to reproduce environmental lighting
conditions accurately.
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Figure 9: Repeated experiment; different initial cap voltage
hinders exactly reproducible voltage traces; controlled dis-
charging of capacitor planned in future versions; reaction of
harvester is repeatable, i.e. gradient of cap voltage is equal.

4.2 Repetition Accuracy
To alleviate uncontrollable conditions such as varying radio channel
conditions, subsequent repetitions of experiments are needed. We
compare two experiment runs using an energy-aware but simple
program on our WiFi sensor node. The node operates as long as
it has energy and enters a sleep mode if detected otherwise. The
sensor node queries the ADC of the harvesting platform four times
a second. If the capacitor voltage is larger than 2V it stays active,
otherwise it goes to sleep for 2min to save energy waiting for the
capacitor to charge.

We attach another platform with the same hardware to the in-
puts of the ADC inside the box and sample values every 100ms to
obtain a timely fine-grained image without influence of the wireless
channel. We display the resulting cap voltage trace of both runs
and the replayed solar trace in Fig. 9. Since the initial cap voltages
differ, the curves do not exactly overlap. A small change of just
20mV results in unequal decisions of the sensor node. If the nodes
are in the same state, their power consumption is equal as well
as the solar current which charges the capacitor. This translates
to an earlier point in time, at which the threshold voltage of 2V
is reached and thus untimely decision of the node. Consequently,
more effort has to be spent to adjust the initial capacitor voltage,
which is hard to do manually. Since the used harvesting platform al-
lows controlled discharging of the capacitor, we plan to implement
a voltage adjustment at the beginning of each experiment.

The key observation can be seen in the magnification figure.
When two nodes in the different runs are in the same state and
consequently have the same power consumption, the gradient of the
two cap voltage curves is the same; especially when the illumination
level changes rapidly. E.g. between approximately 24 and 25min,
the cap voltage increases in both runs by 1mV each six seconds.
The RMSE of the solar current between both runs is 0.07mA, which
is below the measurement accuracy of the solar harvester.

5 RELATEDWORK
The authors of [6] present a small and accurate platform for em-
ulating current-voltage traces of solar energy but also RF energy.
As RF traces vary much faster, they spend additional effort to in-
crease the responsiveness of their platform. Their superior speed
and accuracy comes at a higher price and a more complex electrical

circuit. Additionally, practical issues such as partly covering of the
solar panel cannot be directly investigated with their platform.

The analog front end of [2] allows for an accurate emulation of a
variety of solar cells. Their system supports a very large range, capa-
ble of generating up to 9.8V and a current of up to 1.89A. However,
their focus is not on providing the interface for replaying real-world
data or corner cases to evaluate energy-aware algorithms.

A high-accuracy testing platform for solar energy-harvesting
devices is presented in [7]. The platform is able to variate light-
ing conditions in several ways: by distance alteration, dimming,
filtering or variation of incident angle. However, with a volume of
0.83m3 compared to our box at 0.02m3, it is over-sized for small
energy-harvesting devices.

6 CONCLUSION & OUTLOOK
We presented an affordable light box, which is able to reproduce
environmental conditions repeatedly in the laboratory. We showed
that the box achieves measurement accuracy within the range of
the harvesting platform which underlines that it is sufficient for
investigating algorithms relying on typical low-power platforms.

The box can be easily extended with additional LEDs for larger
solar cells or higher light intensity. With costs belowe 110, we plan
to produce more boxes to build a testbed for nodes experiencing
different conditions. Additionally, we plan to integrate a mecha-
nism for charging and discharging of the capacitor to enable fully
autonomous operation. Follow-up experiments also embrace inter-
acting nodes in multiple boxes and their joint energy budgeting.
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